# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# **Diphenylmethyl isothiocyanate**

#### Pei-Hua Zhao,\* Jun-Jie Liu, Mei Zhang, Gui-Zhe Zhao and Ya-Oing Liu

Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, People's Republic of China Correspondence e-mail: zph2004@yahoo.com.cn

Received 7 January 2012; accepted 9 January 2012

Key indicators: single-crystal X-ray study; T = 113 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.079; data-to-parameter ratio = 18.8.

The asymmetric unit of the title compound,  $C_{14}H_{11}NS$ , contains two molecules in which the dihedral angles between the phenyl rings are 77.23 (7) and 86.30 (7)°. No aromatic  $\pi - \pi$ stacking interactions are observed.

#### **Related literature**

For the synthetic applications of isothiocyanates, see: Fernandez et al. (1995); Mukerjee & Ashare (1991); Stephensen & Zaragosa (1997).



#### **Experimental**

#### Crystal data

β

| •                                  |                                           |
|------------------------------------|-------------------------------------------|
| C <sub>14</sub> H <sub>11</sub> NS | $\gamma = 93.573 \ (6)^{\circ}$           |
| $M_r = 225.30$                     | V = 1157.9 (11) Å <sup>3</sup>            |
| Triclinic, P1                      | Z = 4                                     |
| a = 9.635 (5)  Å                   | Mo $K\alpha$ radiation                    |
| b = 10.222 (6) Å                   | $\mu = 0.25 \text{ mm}^{-1}$              |
| c = 11.974 (7) Å                   | T = 113  K                                |
| $\alpha = 98.491 \ (13)^{\circ}$   | $0.24 \times 0.20 \times 0.18 \text{ mm}$ |
| $\beta = 95.296 \ (15)^{\circ}$    |                                           |

#### Data collection

```
Rigaku Saturn724 CCD
  diffractometer
Absorption correction: multi-scan
  (CrystalClear; Rigaku/MSC,
  2005)
  T_{\min} = 0.943, T_{\max} = 0.957
```

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$  $wR(F^2) = 0.079$ S = 0.895430 reflections 289 parameters

12035 measured reflections 5430 independent reflections 3169 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.042$ 

2 restraints H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$ 

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported financially by the Start-up Foundation and the Youth Foundation of North University of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6596).

#### References

Fernandez, J. M. G., Mellet, C. O., Blanco, J. L. J., Mota, J. F., Gadelle, A., Coste Sarguent, A. & Defaye, J. (1995). Carbohydr. Res. 268, 57-71.

Mukerjee, A. K. & Ashare, R. (1991). Chem. Rev. 91, 1-24.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stephensen, H. & Zaragosa, F. (1997). J. Org. Chem. 62, 6096-6097.

Acta Cryst. (2012). E68, o388 [doi:10.1107/S1600536812000888]

## Diphenylmethyl isothiocyanate

P.-H. Zhao, J.-J. Liu, M. Zhang, G.-Z. Zhao and Y.-Q. Liu

### Experimental

Diphenylamine (44.0 mmol) was dissolved in absolute ethanol (50.0 ml). Carbon disulfide (440.0 mmol) and triethylamine (44.0 mmol) were added while stirring. The reaction mixture was stirred for 0.5 h at room temperature and then cooled on an ice bath. Di-*tert* butyl dicarbonate (43.6 mmol) dissolved in absolute ethanol (10.0 ml), was added followed by the immediate addition of a catalytic amount of 1,4-diazabicyclo-[2.2.2]octane (0.88 mmol) in absolute ethanol (10.0 ml). The reaction mixture was kept in the ice bath for 5 min, and was then allowed to room temperature. After the reaction was completed, the solvents were evporated thoroughly *in vacuo*. The residue obtained was taken up in ether and filtered off, and the filtrate was evaporated in vacuo to afford the crude. The crude was separated through column chromatography on silica gel eluting with petroleum ether- dichloromethane (30:1 *v/v*) to give the white product. Colourless prisms of the title compound were obtained by slow evaporation of the dichloromethane/n-hexane solutions at room temperature. <sup>1</sup>H-NMR(400 MHz, CDCl<sub>3</sub>, TMS): 6.02 (s, 1H, CH), 7.33–7.42 (m, 10H, Ph—H) p.p.m.. <sup>13</sup>C-NMR(100 MHz, CDCl<sub>3</sub>, TMS): 64.6 (CH), 126.7, 128.4, 129.0, 139.3 (Ph—CH and Ph—C) p.p.m..

### Refinement

All the H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

#### **Figures**



Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.



Fig. 2. The crystal packing for (I).

## Diphenylmethyl isothiocyanate

| Crystal data                       |                                                |
|------------------------------------|------------------------------------------------|
| C <sub>14</sub> H <sub>11</sub> NS | Z = 4                                          |
| $M_r = 225.30$                     | F(000) = 472                                   |
| Triclinic, <i>P</i> T              | $D_{\rm x} = 1.292 {\rm Mg} {\rm m}^{-3}$      |
| a = 9.635 (5)  Å                   | Mo K $\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 10.222 (6) Å                   | Cell parameters from 3900 reflections          |
| c = 11.974 (7) Å                   | $\theta = 1.7 - 28.0^{\circ}$                  |
| $\alpha = 98.491 \ (13)^{\circ}$   | $\mu = 0.25 \text{ mm}^{-1}$                   |
| $\beta = 95.296 \ (15)^{\circ}$    | T = 113  K                                     |
| $\gamma = 93.573 \ (6)^{\circ}$    | Prism, colorless                               |
| $V = 1157.9 (11) \text{ Å}^3$      | $0.24\times0.20\times0.18~mm$                  |
|                                    |                                                |

#### Data collection

| Rigaku Saturn724 CCD<br>diffractometer                                | 5430 independent reflections                                             |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------|
| Radiation source: rotating anode                                      | 3169 reflections with $I > 2\sigma(I)$                                   |
| multilayer                                                            | $R_{\rm int} = 0.042$                                                    |
| Detector resolution: 14.22 pixels mm <sup>-1</sup>                    | $\theta_{\text{max}} = 27.9^{\circ},  \theta_{\text{min}} = 1.7^{\circ}$ |
| $\omega$ and $\phi$ scans                                             | $h = -12 \rightarrow 12$                                                 |
| Absorption correction: multi-scan<br>(CrystalClear; Rigaku/MSC, 2005) | $k = -13 \rightarrow 13$                                                 |
| $T_{\min} = 0.943, \ T_{\max} = 0.957$                                | $l = -15 \rightarrow 12$                                                 |
| 12035 measured reflections                                            |                                                                          |

### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                            |
|---------------------------------|-------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.034$ | Hydrogen site location: inferred from neighbouring sites                                  |
| $wR(F^2) = 0.079$               | H-atom parameters constrained                                                             |
| <i>S</i> = 0.89                 | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0253P)^{2}]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| 5430 reflections                | $(\Delta/\sigma)_{\rm max} = 0.003$                                                       |
| 289 parameters                  | $\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$                                     |
| 2 restraints                    | $\Delta \rho_{min} = -0.26 \text{ e} \text{ Å}^{-3}$                                      |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|     | x            | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|--------------|---------------------------|
| S1  | 0.10665 (4)  | 0.73024 (4)  | 0.96006 (4)  | 0.03299 (12)              |
| S2  | 0.11876 (4)  | 1.01973 (4)  | 0.18909 (4)  | 0.03186 (12)              |
| N1  | 0.10403 (14) | 0.46640 (15) | 0.86731 (12) | 0.0375 (4)                |
| N2  | 0.27245 (15) | 0.85453 (13) | 0.30434 (11) | 0.0353 (4)                |
| C1  | 0.14265 (15) | 0.41926 (16) | 0.63396 (13) | 0.0266 (4)                |
| H1  | 0.1367       | 0.5072       | 0.6711       | 0.032*                    |
| C2  | 0.15692 (15) | 0.39629 (17) | 0.51813 (14) | 0.0298 (4)                |
| H2  | 0.1605       | 0.4686       | 0.4766       | 0.036*                    |
| C3  | 0.16580 (15) | 0.26911 (17) | 0.46354 (13) | 0.0286 (4)                |
| Н3  | 0.1770       | 0.2538       | 0.3848       | 0.034*                    |
| C4  | 0.15828 (15) | 0.16335 (16) | 0.52411 (13) | 0.0292 (4)                |
| H4  | 0.1623       | 0.0754       | 0.4863       | 0.035*                    |
| C5  | 0.14493 (15) | 0.18588 (15) | 0.63921 (13) | 0.0267 (4)                |
| Н5  | 0.1411       | 0.1133       | 0.6803       | 0.032*                    |
| C6  | 0.13704 (14) | 0.31449 (15) | 0.69539 (12) | 0.0216 (3)                |
| C7  | 0.12841 (16) | 0.33178 (15) | 0.82319 (12) | 0.0254 (4)                |
| H7  | 0.0469       | 0.2731       | 0.8372       | 0.030*                    |
| C8  | 0.25897 (15) | 0.28997 (15) | 0.88646 (12) | 0.0233 (3)                |
| C9  | 0.38754 (16) | 0.36001 (17) | 0.88849 (13) | 0.0309 (4)                |
| Н9  | 0.3937       | 0.4374       | 0.8534       | 0.037*                    |
| C10 | 0.50688 (16) | 0.31767 (18) | 0.94139 (13) | 0.0352 (4)                |
| H10 | 0.5947       | 0.3656       | 0.9421       | 0.042*                    |
| C11 | 0.49818 (16) | 0.20569 (17) | 0.99316 (13) | 0.0324 (4)                |
| H11 | 0.5800       | 0.1768       | 1.0296       | 0.039*                    |
| C12 | 0.37035 (17) | 0.13574 (16) | 0.99191 (13) | 0.0309 (4)                |
| H12 | 0.3645       | 0.0585       | 1.0272       | 0.037*                    |
| C13 | 0.25053 (16) | 0.17819 (15) | 0.93923 (12) | 0.0259 (4)                |
| H13 | 0.1627       | 0.1306       | 0.9393       | 0.031*                    |
| C14 | 0.10830 (15) | 0.57794 (17) | 0.90672 (13) | 0.0262 (4)                |
| C15 | 0.25922 (15) | 0.57519 (16) | 0.25156 (13) | 0.0269 (4)                |
| H15 | 0.1838       | 0.6219       | 0.2249       | 0.032*                    |
| C16 | 0.26212 (16) | 0.44037 (16) | 0.21331 (13) | 0.0305 (4)                |
| H16 | 0.1888       | 0.3949       | 0.1607       | 0.037*                    |
| C17 | 0.37235 (16) | 0.37218 (16) | 0.25209 (13) | 0.0284 (4)                |
| H17 | 0.3748       | 0.2801       | 0.2256       | 0.034*                    |
| C18 | 0.47868 (16) | 0.43822 (15) | 0.32921 (13) | 0.0260 (4)                |
| H18 | 0.5539       | 0.3914       | 0.3560       | 0.031*                    |
| C19 | 0.47557 (15) | 0.57276 (15) | 0.36751 (12) | 0.0241 (3)                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| H19 | 0.5486       | 0.6178       | 0.4206       | 0.029*     |
|-----|--------------|--------------|--------------|------------|
| C20 | 0.36602 (15) | 0.64199 (14) | 0.32856 (12) | 0.0208 (3) |
| C21 | 0.37093 (15) | 0.79000 (14) | 0.37246 (12) | 0.0242 (4) |
| H21 | 0.4669       | 0.8293       | 0.3656       | 0.029*     |
| C22 | 0.34411 (15) | 0.81973 (14) | 0.49715 (13) | 0.0215 (3) |
| C23 | 0.45057 (16) | 0.87830 (14) | 0.57871 (13) | 0.0249 (4) |
| H23 | 0.5404       | 0.9000       | 0.5567       | 0.030*     |
| C24 | 0.42671 (16) | 0.90538 (15) | 0.69248 (13) | 0.0280 (4) |
| H24 | 0.4997       | 0.9462       | 0.7478       | 0.034*     |
| C25 | 0.29602 (16) | 0.87249 (15) | 0.72478 (13) | 0.0277 (4) |
| H25 | 0.2791       | 0.8911       | 0.8022       | 0.033*     |
| C26 | 0.19007 (16) | 0.81236 (15) | 0.64359 (13) | 0.0279 (4) |
| H26 | 0.1009       | 0.7890       | 0.6659       | 0.034*     |
| C27 | 0.21326 (15) | 0.78614 (15) | 0.53047 (13) | 0.0249 (4) |
| H27 | 0.1401       | 0.7452       | 0.4754       | 0.030*     |
| C28 | 0.20928 (15) | 0.92584 (15) | 0.25600 (12) | 0.0226 (3) |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$      | $U^{23}$    |
|-----|-------------|-------------|-------------|--------------|---------------|-------------|
| S1  | 0.0286 (2)  | 0.0308 (3)  | 0.0386 (3)  | 0.00210 (18) | 0.00829 (19)  | -0.0008 (2) |
| S2  | 0.0346 (2)  | 0.0281 (2)  | 0.0330 (3)  | 0.00572 (18) | -0.00353 (19) | 0.0080 (2)  |
| N1  | 0.0422 (9)  | 0.0355 (9)  | 0.0344 (9)  | 0.0162 (7)   | 0.0031 (7)    | -0.0012 (7) |
| N2  | 0.0481 (9)  | 0.0309 (8)  | 0.0290 (8)  | 0.0109 (7)   | 0.0020 (7)    | 0.0090 (7)  |
| C1  | 0.0235 (8)  | 0.0244 (9)  | 0.0313 (10) | 0.0030 (7)   | 0.0002 (7)    | 0.0029 (8)  |
| C2  | 0.0246 (9)  | 0.0332 (10) | 0.0326 (10) | -0.0012 (7)  | -0.0005 (7)   | 0.0120 (8)  |
| C3  | 0.0204 (8)  | 0.0427 (11) | 0.0220 (9)  | -0.0013 (7)  | 0.0023 (7)    | 0.0047 (8)  |
| C4  | 0.0292 (9)  | 0.0283 (9)  | 0.0285 (10) | 0.0042 (7)   | 0.0036 (7)    | -0.0023 (8) |
| C5  | 0.0292 (9)  | 0.0250 (9)  | 0.0271 (9)  | 0.0066 (7)   | 0.0025 (7)    | 0.0064 (8)  |
| C6  | 0.0167 (8)  | 0.0251 (9)  | 0.0228 (9)  | 0.0050 (6)   | 0.0004 (6)    | 0.0031 (7)  |
| C7  | 0.0245 (8)  | 0.0270 (9)  | 0.0247 (9)  | 0.0053 (7)   | 0.0034 (7)    | 0.0020 (7)  |
| C8  | 0.0232 (8)  | 0.0298 (9)  | 0.0163 (8)  | 0.0047 (7)   | 0.0023 (6)    | 0.0006 (7)  |
| C9  | 0.0312 (9)  | 0.0410 (11) | 0.0218 (9)  | -0.0020 (8)  | 0.0031 (7)    | 0.0106 (8)  |
| C10 | 0.0230 (9)  | 0.0561 (12) | 0.0264 (10) | -0.0036 (8)  | 0.0018 (7)    | 0.0096 (9)  |
| C11 | 0.0275 (9)  | 0.0463 (12) | 0.0230 (9)  | 0.0102 (8)   | -0.0007 (7)   | 0.0032 (8)  |
| C12 | 0.0380 (10) | 0.0300 (10) | 0.0250 (9)  | 0.0085 (8)   | 0.0008 (8)    | 0.0045 (8)  |
| C13 | 0.0253 (9)  | 0.0283 (9)  | 0.0225 (9)  | 0.0002 (7)   | 0.0027 (7)    | -0.0003 (7) |
| C14 | 0.0200 (8)  | 0.0382 (11) | 0.0218 (9)  | 0.0081 (7)   | 0.0047 (6)    | 0.0052 (8)  |
| C15 | 0.0214 (8)  | 0.0314 (10) | 0.0277 (9)  | 0.0040 (7)   | 0.0001 (7)    | 0.0048 (8)  |
| C16 | 0.0281 (9)  | 0.0335 (10) | 0.0259 (9)  | -0.0053 (7)  | -0.0013 (7)   | -0.0030 (8) |
| C17 | 0.0340 (10) | 0.0224 (9)  | 0.0289 (10) | 0.0028 (7)   | 0.0084 (8)    | 0.0006 (8)  |
| C18 | 0.0254 (9)  | 0.0264 (9)  | 0.0277 (9)  | 0.0076 (7)   | 0.0042 (7)    | 0.0057 (8)  |
| C19 | 0.0210 (8)  | 0.0278 (9)  | 0.0225 (9)  | 0.0008 (6)   | 0.0004 (6)    | 0.0023 (7)  |
| C20 | 0.0204 (8)  | 0.0226 (8)  | 0.0201 (8)  | 0.0015 (6)   | 0.0045 (6)    | 0.0043 (7)  |
| C21 | 0.0235 (8)  | 0.0235 (9)  | 0.0271 (9)  | 0.0035 (7)   | 0.0026 (7)    | 0.0084 (7)  |
| C22 | 0.0252 (8)  | 0.0152 (8)  | 0.0253 (9)  | 0.0055 (6)   | 0.0020 (7)    | 0.0051 (7)  |
| C23 | 0.0231 (8)  | 0.0196 (8)  | 0.0324 (10) | -0.0002 (6)  | 0.0011 (7)    | 0.0071 (7)  |
| C24 | 0.0311 (9)  | 0.0229 (9)  | 0.0278 (10) | -0.0020(7)   | -0.0067 (7)   | 0.0044 (7)  |

| C25          | 0.0352(10)<br>0.0258(9) | 0.0242 (9)  | 0.0243 (9) | 0.0071 (7)  | 0.0035 (7) | 0.0032 (7)             |
|--------------|-------------------------|-------------|------------|-------------|------------|------------------------|
| C20          | 0.0238(9)               | 0.0270(9)   | 0.0309(10) | 0.0034(7)   | -0.0040(7) | 0.0039(8)<br>0.0013(7) |
| C27          | 0.0210(8)               | 0.0230(9)   | 0.0201(9)  | -0.0026(7)  | -0.0010(7) | 0.0015(7)              |
| C28          | 0.0233 (8)              | 0.0212 (8)  | 0.0203 (9) | -0.0003 (0) | 0.0029 (0) | 0.0013 (7)             |
| Geometric pa | arameters (Å, °)        |             |            |             |            |                        |
| S1-C14       |                         | 1.5947 (19) | C12–       | C13         | 1.38       | 38 (2)                 |
| S2-C28       |                         | 1.5893 (16) | C12-       | -H12        | 0.93       | 500                    |
| N1-C14       |                         | 1.164 (2)   | C13–       | -H13        | 0.93       | 500                    |
| N1—C7        |                         | 1.441 (2)   | C15-       | -C20        | 1.38       | 38 (2)                 |
| N2-C28       |                         | 1.1626 (18) | C15-       | -C16        | 1.38       | 39 (2)                 |
| N2-C21       |                         | 1.4473 (19) | C15-       | -H15        | 0.9        | 500                    |
| C1—C6        |                         | 1.387 (2)   | C16–       | C17         | 1.38       | 38 (2)                 |
| C1—C2        |                         | 1.393 (2)   | C16–       | -H16        | 0.93       | 500                    |
| C1—H1        |                         | 0.9500      | C17–       | -C18        | 1.38       | 33 (2)                 |
| C2—C3        |                         | 1.378 (2)   | C17–       | –H17        | 0.93       | 500                    |
| C2—H2        |                         | 0.9500      | C18–       | -C19        | 1.38       | 87 (2)                 |
| C3—C4        |                         | 1.390 (2)   | C18–       | -H18        | 0.93       | 500                    |
| С3—Н3        |                         | 0.9500      | C19–       | -C20        | 1.39       | 90 (2)                 |
| C4—C5        |                         | 1.383 (2)   | C19–       | -H19        | 0.93       | 500                    |
| C4—H4        |                         | 0.9500      | C20–       | -C21        | 1.52       | 23 (2)                 |
| C5—C6        |                         | 1.395 (2)   | C21–       | -C22        | 1.52       | 28 (2)                 |
| С5—Н5        |                         | 0.9500      | C21-       | -H21        | 1.00       | 000                    |
| C6—C7        |                         | 1.525 (2)   | C22–       | -C23        | 1.38       | 39 (2)                 |
| С7—С8        |                         | 1.525 (2)   | C22–       | -C27        | 1.39       | 949 (19)               |
| С7—Н7        |                         | 1.0000      | C23–       | -C24        | 1.39       | 93 (2)                 |
| C8—C13       |                         | 1.387 (2)   | C23–       | -H23        | 0.93       | 500                    |
| C8—C9        |                         | 1.388 (2)   | C24—       | -C25        | 1.38       | 87 (2)                 |
| C9—C10       |                         | 1.385 (2)   | C24—       | -H24        | 0.93       | 500                    |
| С9—Н9        |                         | 0.9500      | C25–       | -C26        | 1.38       | 38 (2)                 |
| C10-C11      |                         | 1.381 (2)   | C25–       | -H25        | 0.93       | 500                    |
| C10—H10      |                         | 0.9500      | C26–       | -C27        | 1.38       | 33 (2)                 |
| C11—C12      |                         | 1.383 (2)   | C26–       | -H26        | 0.93       | 500                    |
| C11—H11      |                         | 0.9500      | C27–       | –H27        | 0.93       | 500                    |
| C14—N1—C7    | 7                       | 168.64 (16) | N1—        | C14—S1      | 177        | .42 (15)               |
| C28—N2—C2    | 21                      | 168.05 (17) | C20–       | -C15-C16    | 120        | .28 (14)               |
| C6-C1-C2     |                         | 120.40 (15) | C20–       | -C15-H15    | 119        | .9                     |
| C6-C1-H1     |                         | 119.8       | C16–       | -C15-H15    | 119        | .9                     |
| C2-C1-H1     |                         | 119.8       | C17–       | -C16-C15    | 119        | .89 (15)               |
| C3—C2—C1     |                         | 120.23 (15) | C17–       | -C16-H16    | 120        | .1                     |
| С3—С2—Н2     |                         | 119.9       | C15-       | -C16-H16    | 120        | .1                     |
| C1—C2—H2     |                         | 119.9       | C18–       | -C17-C16    | 120        | .02 (15)               |
| C2—C3—C4     |                         | 119.74 (15) | C18–       | -C17-H17    | 120        | .0                     |
| С2—С3—Н3     |                         | 120.1       | C16–       | -C17-H17    | 120        | .0                     |
| С4—С3—Н3     |                         | 120.1       | C17–       | -C18-C19    | 120        | .05 (14)               |
| C5—C4—C3     |                         | 120.16 (15) | C17–       | -C18-H18    | 120        | .0                     |
| C5—C4—H4     |                         | 119.9       | C19–       | -C18-H18    | 120        | .0                     |
| C3—C4—H4     |                         | 119.9       | C18–       | -C19-C20    | 120        | .31 (15)               |

| C4—C5—C6      | 120.48 (15)  | С18—С19—Н19     | 119.8        |
|---------------|--------------|-----------------|--------------|
| C4—C5—H5      | 119.8        | С20—С19—Н19     | 119.8        |
| С6—С5—Н5      | 119.8        | C15—C20—C19     | 119.45 (15)  |
| C1—C6—C5      | 118.97 (14)  | C15—C20—C21     | 123.10 (14)  |
| C1—C6—C7      | 123.65 (14)  | C19—C20—C21     | 117.44 (14)  |
| C5—C6—C7      | 117.33 (13)  | N2—C21—C20      | 111.07 (13)  |
| N1—C7—C6      | 111.17 (13)  | N2—C21—C22      | 109.58 (12)  |
| N1—C7—C8      | 110.31 (13)  | C20—C21—C22     | 112.88 (12)  |
| C6—C7—C8      | 111.92 (12)  | N2—C21—H21      | 107.7        |
| N1—C7—H7      | 107.8        | C20—C21—H21     | 107.7        |
| С6—С7—Н7      | 107.8        | C22—C21—H21     | 107.7        |
| С8—С7—Н7      | 107.8        | C23—C22—C27     | 119.35 (14)  |
| C13—C8—C9     | 119.46 (14)  | C23—C22—C21     | 120.30 (14)  |
| C13—C8—C7     | 119.84 (14)  | C27—C22—C21     | 120.33 (14)  |
| C9—C8—C7      | 120.67 (14)  | C22—C23—C24     | 120.52 (14)  |
| С10—С9—С8     | 120.35 (16)  | С22—С23—Н23     | 119.7        |
| С10—С9—Н9     | 119.8        | С24—С23—Н23     | 119.7        |
| С8—С9—Н9      | 119.8        | C25—C24—C23     | 119.76 (15)  |
| С11—С10—С9    | 120.00 (16)  | C25—C24—H24     | 120.1        |
| C11-C10-H10   | 120.0        | C23—C24—H24     | 120.1        |
| С9—С10—Н10    | 120.0        | C24—C25—C26     | 119.79 (15)  |
| C10-C11-C12   | 119.96 (15)  | С24—С25—Н25     | 120.1        |
| C10-C11-H11   | 120.0        | С26—С25—Н25     | 120.1        |
| C12—C11—H11   | 120.0        | C27—C26—C25     | 120.56 (15)  |
| C11—C12—C13   | 120.14 (16)  | С27—С26—Н26     | 119.7        |
| C11—C12—H12   | 119.9        | C25—C26—H26     | 119.7        |
| C13—C12—H12   | 119.9        | C26—C27—C22     | 120.02 (15)  |
| C8—C13—C12    | 120.07 (15)  | С26—С27—Н27     | 120.0        |
| С8—С13—Н13    | 120.0        | С22—С27—Н27     | 120.0        |
| С12—С13—Н13   | 120.0        | N2—C28—S2       | 178.13 (15)  |
| C6—C1—C2—C3   | -0.1 (2)     | C20-C15-C16-C17 | -0.1 (2)     |
| C1—C2—C3—C4   | 1.0 (2)      | C15-C16-C17-C18 | 0.4 (2)      |
| C2—C3—C4—C5   | -1.4 (2)     | C16-C17-C18-C19 | -0.3 (2)     |
| C3—C4—C5—C6   | 0.8 (2)      | C17-C18-C19-C20 | -0.1 (2)     |
| C2—C1—C6—C5   | -0.4 (2)     | C16—C15—C20—C19 | -0.3 (2)     |
| C2—C1—C6—C7   | 177.04 (14)  | C16—C15—C20—C21 | 178.89 (13)  |
| C4—C5—C6—C1   | 0.1 (2)      | C18—C19—C20—C15 | 0.4 (2)      |
| C4—C5—C6—C7   | -177.57 (13) | C18—C19—C20—C21 | -178.82 (12) |
| C14—N1—C7—C6  | -94.4 (8)    | C28—N2—C21—C20  | -153.8 (7)   |
| C14—N1—C7—C8  | 30.4 (8)     | C28—N2—C21—C22  | 80.8 (7)     |
| C1—C6—C7—N1   | 9.4 (2)      | C15-C20-C21-N2  | -13.98 (19)  |
| C5—C6—C7—N1   | -173.10 (13) | C19—C20—C21—N2  | 165.23 (12)  |
| C1—C6—C7—C8   | -114.46 (16) | C15—C20—C21—C22 | 109.54 (16)  |
| C5—C6—C7—C8   | 63.05 (18)   | C19—C20—C21—C22 | -71.24 (17)  |
| N1—C7—C8—C13  | 123.86 (15)  | N2—C21—C22—C23  | -123.47 (15) |
| C6—C7—C8—C13  | -111.81 (15) | C20—C21—C22—C23 | 112.18 (15)  |
| N1—C7—C8—C9   | -58.43 (18)  | N2—C21—C22—C27  | 57.70 (18)   |
| C6—C7—C8—C9   | 65.90 (19)   | C20—C21—C22—C27 | -66.65 (17)  |
| C13—C8—C9—C10 | 0.9 (2)      | C27—C22—C23—C24 | -1.0 (2)     |

| C7—C8—C9—C10    | -176.82 (14) | C21—C22—C23—C24 | -179.89 (13) |
|-----------------|--------------|-----------------|--------------|
| C8—C9—C10—C11   | -0.4 (2)     | C22—C23—C24—C25 | 0.6 (2)      |
| C9-C10-C11-C12  | 0.1 (2)      | C23—C24—C25—C26 | 0.2 (2)      |
| C10-C11-C12-C13 | -0.3 (2)     | C24—C25—C26—C27 | -0.7 (2)     |
| C9—C8—C13—C12   | -1.1 (2)     | C25—C26—C27—C22 | 0.2 (2)      |
| C7—C8—C13—C12   | 176.66 (13)  | C23—C22—C27—C26 | 0.6 (2)      |
| C11—C12—C13—C8  | 0.8 (2)      | C21—C22—C27—C26 | 179.47 (13)  |
| C7—N1—C14—S1    | -176 (100)   | C21—N2—C28—S2   | -168 (4)     |







